

PureCube 1-step batch Midi Plus Columns

Product	Catalog No.	Package size	
PureCube 1-step batch Midi Plus Columns (8)	63203	8 columns	
PureCube 1-step batch Midi Plus Columns (48)	63208	48 columns	

Product Description

Designed for small to mid-scale protein purification, the PureCube 1-step batch spin columns save time and pipetting steps. Featuring SelfSeal $^{\text{TM}}$ membrane technology, the column retains resin and sample in a chamber for batch incubation. By centrifugation, the membrane pores dilate and the filtered eluate gathers in the collection chamber of the column. PureCube 1-step batch spin columns are available in two sizes: Mini for expression trials, small-scale screening, and other small-volume purification needs; or Midi Plus for volumes of up to 20 mL.

This product contains fully assembled PureCube 1-step batch Midi Plus Columns featuring the SelfSeal Technology. They can be used to purify proteins using 0.25-1 mL of affinity purification matrix of your choice in a bench-top centrifuge with swing bucket rotor of handling 50 mL centrifuge tubes. Up to 20 ml of lysate, wash or elution buffer can be loaded in each centrifugation step.

Protocol

Note: The following spin speeds and times are appropriate for a 0.25-1 mL resin bed volume. Spin times may increase with larger bed volumes.

Note: If using only one spin column, ensure that the spin column is counterbalanced with a unit of equal weight, e.g. an empty 50 mL tube adjusted with distilled water.

<u>Note:</u> The <u>clear</u> spin push cap should be used for all centrifugation steps. The <u>yellow</u> screw cap is recommended for the batch incubation steps only.

<u>Note</u>: Detailed protocols with information on recommended buffer volumes and compositions, incubation times and other useful information for a range of affinity purification resins are available at www.cube-biotech.com/protocols.

PRE-EQUILIBRATION

- 1. Pipet the appropriate resin slurry into the batch incubation chamber of the spin column barrel. Use the **clear** spin push cap to close the chamber and spin the resin at 400 x g for 5 min.
 - **Note:** This step is critical to ensure that all ethanol is removed from the resin to avoid interference with the SelfSeal membrane technology. E.g. PureCube Agarose is provided as 50% suspension in buffer containing 20% ethanol.
- 2. Pre-equilibrate the Midi Plus spin column with 15 mL equilibration buffer by centrifuging the spin column at $400 \times g$ for 5 min.
- 3. Repeat this step to remove any residual ethanol.

SAMPLE PREPARATION

4. Immediately before loading re-filter the sample through a 0.2 μm filter (e.g. syringe filter) to remove any solid material that might clog the column. <u>Note:</u> It is critical to perform this step immediately before loading the sample on the column to ensure optimal performance.

SAMPLE LOADING

5. Empty the 50 mL centrifuge tube and place the spin column barrel containing the equilibrated purification resin back into it. Load the required volume of filtered sample. The maximum sample volume is 20 mL. Tightly screw the **yellow** batch incubation cap and invert 2-3 times to mix the sample and the resin. Place the tube on a standard tube roller or rotator and mix for 1-3 hours. After batch incubation, replace the **yellow** cap with the **clear** spin push cap. Centrifuge the column at 400 x g for up to 10 min and collect the flow-through. **Note:** Keep an aliquot of the flow-through fraction for subsequent SDS-PAGE analysis.

WASH

- 6. Load the spin column barrel with up to 20 mL of wash buffer and spin at 400 x g for 5 min. Remove the flow-through. <u>Note:</u> The flow-through contains the wash fractions. Keep aliquots of the individual wash fractions for subsequent SDS-PAGE analysis.
- 7. Repeat the wash step for at least two times to ensure removal of non-specifically bound protein. If applicable, check the samples for protein content using a UV-spectrophotometer. Absorbance at 280 nm should be < 0.1.

ELUTION

- 8. Elute the target protein 5 times by adding 5 x 1 ml elution buffer and centrifuging at 400 x g for 5 min. Save each elution fraction in a separate tube (e.g. 1.5 ml centrifuge tube) and determine the protein concentration of each fraction by measuring absorbance at 280 and 260 nm. Optional: Use a fresh 50 ml tube for the elution step to avoid contamination with the previous wash fractions.
- 9. We recommend to save small aliquots of the collected fractions at various steps and analyzing them by SDS-PAGE and Western Blot to assess the efficacy of the purification process.

Shipping & Storage

Shipment and Storage Temperature Ambient temperature

Additional Information

For more protein purification protocols, please visit our webpage at: WWW.Cube-

<u>biotech.com/protocols</u>. For affinity purification of His-tagged, GST-tagged, rho-tagged or strep[®]-tagged proteins, Cube Biotech offers dedicated agarose resins, magnetic beads and prepacked cartridges. Also available are a range of ultrapure detergents and buffers for extraction and purification of membrane proteins.

See <u>www.cube-biotech.com/products</u> for details.

<u>Disclaimer</u>: Our products are intended for molecular biology applications. These products are not intended for the diagnosis, prevention, or treatment of a disease. ademarks: Strep-tag® (IBA GmbH).